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antiendorphin substances may be

important in the treatment of shock by reversing one of the important

pathophysiological mechanisms of cardiovascular depression.
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SUMMARY

In order to investigate the pathophysiological role of endogenous

morphine-like substances (endorphins for short) in shock, we studied

cynomolgus monkeys and dogs subjected to hemorrhagic or endotoxic shock.

Blockade of opiate receptors with naloxone improved cardiovascular function

(mean arterial pressure, cardiac output, and myocardial contractility) in both

species and both models but requires correction of acidosis and hypothermia.

Shock is associated with elevations in plasma levels of "-endorphin and'B-

lipotropin. Using different sites of injection and various pharmacological

and anatomical ablations, we have shown that naloxone's beneficial effects in

hemorrhagic shock are due to potentiation of the effect of released

catecholamines on cardiac opiate receptors. The myocardial depression found

in shock is due to an endorphin-induced attenuation of catecholamine effects

on the heart. We believe this is mediated by interaction with cardiac

receptors and is expressed via G-protein activation of adenylate cyclase and

cyclic-AMP. This hypothesis needs to be tested by biochemical determination

of these substances, and our observations need to be extended to endotoxic

shock. Nevertheless, naloxone and other antiendorphin substances may be

important in the treatment of shock by reversing one of the important

pathophysiological mechanisms of cardiovascular depression. ) Aqu,
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FOREWORD

In conducting the research described in this report, the investigators

adhered to the "Guide for the Care and Use of Laboratory Animals", prepared by

the Committee on Care and Use of Laboratory Animals of the Institute of

Laboratory Animal Resources, National Research Council (DHEW Publication No.

(NIH) 78-23, revised 1978).
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a

BODY OF REPCRT

a) Problem and Background

Shock due to hemorrhage, trauma, and sepsis remains an imoor-

tant threat to the health and welfare of the soldier in war. Even

during peacetime, septic and hypovolemic shock are frequent and impor-

tant causes of morbidity and mortality in the civilian and military

populations. These shock states do not always respond to appropriate

therapies suggesting the involvement of other pathophysiological mecha-

nisms and hence other treatment options. The exigencies of the battle-

field situation and the availability of rapid evacuation make the use of

simple, rapid, on-the-scene anti-shock therapies highly desirable.

Endogenous morphine-like substances (endorphins) are elevated

in the plasma in response to stress (1). Endogenous and exogenous

opiates depress the cardiovascular system when given intravenously or

into the central nervous system (2). The possible involvement of

endorphins in the pathophysiology of shock was initially evaluated by

Holaday and Faden using rodent models of hemorrhagic and endotoxic

shock. Opiate receptor blockade with naloxone improved mean arterial

pressure and pulse pressure in rats after hypovolemic hemorrhage (3' or

the injection of endotoxin to induce shock (4). This was associated

with increased survival in hemorrhage but not in endotoxemia. Subse-

quently, we showed increased mean arterial pressure, cardiac output and

myocardial contractility in canine hemorrhagic (5) and endotoxic shock

(6). We also demonstrated improved survival; naloxcne converted a 1C

lethal hemorrhagic model to Cfl° survival anc an 80% lethal endotoxic

shock model to 80" survival.

-I



These results were then extended to humans by others and

reported as letters to the editor (7) or uncontrolled, non-randomized

trials (8,9). A very recent randomized trial showed no benefit to the

use of naloxone in human septic shock (10), but the doses of naloxone

used were quite low compared to those found to be effective in rodents,

dogs (3-6) and monkeys (vide infra). We chose, instead, to study the

doses required, the efficacy, and any side effects of naloxone in a

subhuman primate, the cynomolgus monkey. Primates are closer to man

than other species studied, and their responses would be better to study

before extensive human use. Once we established effectiveness and

* dosages, we investigated mechanisms using dogs because of the number of

animals required.

b) Approach

Cynomolgus monkeys or dogs were lightly anesthetized and

instrumented to measure mean arterial pressure (MAP), cardiac output

(CO), heart rate (HR), pulmonary arterial pressures, and myocardial

contractility (LV dp/dt max). Shock was induced by the intravenous

injection of E. coli endotoxin or by bleeding into a reservoir to

achieve and maintain MAP at 45 mmHg. The animals were treated i.v. with

* either naloxone 2 mg/kg bolus plus 2 mg/kg'hr infusion for 4 hours or

O.9S NaCl in equivalent volumes when MAP reached 75 mmHg in endotoxemia

or after 1 hr of hemorrhage (MAP 45 mmHg). Shed blood was reinfused

hr later in the hemorrhage model. These experiments (or slight

modifications thereof) were also done after pharmacological or surgical

ablation of various components of the neurohumoral responses to shock.

Naloxone was also given directly into the central nervous system or the

4 coronary artery to sort out central nervous system from peripheral

I-8



cardiac actions. Stereoisomers of naloxone, other opiate receptor

antagonists like naltrexone and nalbuphine, and other anti-endorphin

substances (namely TRH) were also used.

c) Results: Endotoxemia in monkeys (n=12)

Naloxone significantly increased MAP by 25-30 nmHg over saline

treated controls (p<.0 2 by analysis of variance, ANOVA, Figure 1). Left

ventricular contractility was higher in naloxone treated monkeys (3.6 x

103 nmHg/sec) than in controls (2.4 x 10 mmHg/sec, p<.01 by ANOVA).

Naloxone improved LV dp/dt max by 800 mmHg/sec compared to no change

with saline (p<.02 by ANOVA, Figure 2). There were no differences

* :Ljeen naloxone and saline treatment in CO, stroke volume, HP, peri-

pheral vascular resistance, temperature or metabolic measurements. All

of the naloxone-treated animals were alive at 48 hours but only 1/6

saline treated controls (p<'.C5 by Fisher's exact test). Plasma levels

of c-endorphin and its precursor s-lipotropin rose 4-5-fold and were not

affected by treatment (Table I).

d) Results: Hemorrhage in monkeys (n=22)

In the first group of 10 monkeys we could not find a differ-

ence in cardiovascular responses between naloxore and saline treatment

(Figures 3 and 4). We noted that the naloxone treated animals were

acidotic (Figure 5) and colder (Figure 6) than saline-treated animals

before treatment. Furthermore, analysis of the MAP responses (as a

pressure time product) showed that these responses were affected by

temperature and acid-base balance. Acidosis attenuated the pressure x

time product in response to naloxone (Figure 7); cold attenuated the

plasma B-endorphin response to stress (Figure 8) and the pressure x time

product in response to naloxone (Figure 9).

I'l -- ' 1
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When acidosis and hypothermia were treated or prevented, the

monkeys responded to naloxone (n=6) with significant increases in MA?

(Figure 10) and LV dp/dt max (Figure 11) compared to no response to

saline (n=6). This response increased survival with 5/6 naloxone-

treated monkeys alive at 24 hr versus 2/6 saline-treated controls

(p<.05). The one naloxone-treated monkey that did not survive at 24 hrs

had an iatrogenic death due to a left ventricular catheter-induced

myocardial injury. Plasma 6-endorphin and s-lipotropin rose 4-5-fold

(Table II) and were uninfluenced by treatment. Whole blood histamine

levels were unaffected by shock (Table III).

e) Results: Central nervous system injections

Injection of an enkephalin analogue D-ala 2-met5 -

enkephalinamide (DAME) into the IIrd ventricle of conscious monkeys

produced bradycardia and hypotension (Figure 12) which were

dose-dependent and attenuated by naloxone (Figure 13). Microinjection

of DAME into stereotactically implanted areas from the diencephalon to

the medulla in normotensive unanesthetized monkeys reduced blood

pressure and (inconsistently) heart rate. Injection of naloxone into

these DAME-sensitive sites when the animals were anesthetized and

subjected to hypovolemic shock, however, failed to increase blood

pressure by more than 5 mn'Hg (Table IV).

f) Results: Corticosteroid-naloxone interactions (n=77)

Dexamethasone and methylprednisolone are putatively beneficial

in canine hemorrhagic shcck (11'. However, these steroids at their

maximally effective dosages were not as effective as naloxone when given

in our canine hemorrhagic shock model. Indeed, dexamethasone or methyl-

prednisolone at maximally effective doses actually decreased the

Ii)



beneficial effects of naloxone on hemodynamics and survival. This was

true whether blood was returned to the animal (Figure 14) or not

(Figures 15 and 16). These steroids were slightly beneficial but no-

nearly so as naloxone. We postulated that large doses of these steroids

were preventing endorphin release. Hence, naloxone, having less

endorphin to block, would appear to be less effective.

g) Results: Adrenalectomy (n=23)

Since corticosteroids seemed to have an important interacticn

with naloxone and because the adrenal contains endorphins, we treated

dogs with naloxone or saline one week after adrenalectomy when their

4plasma endorphin levels were quite high (due to loss of negative feed-

back by corticosteroids on the pituitary release of E-endorphin). We

expected to find enhanced responses to naloxone because of the high

plasma endorphin levels. Adrenalectomy, however, completely abclished

the MAP and CO responses and markedly attenuated the LV dp/dt max

response to naloxone. The full nalcxone response could be restored by

physiological doses of hydrocortisone 45 minutes before naloxone

(Figures 17-19). The adrenal would not appear to be the source of

endorphins producing cardiovascular depression in shock. M'oreover,

naloxone's effectiveness in shock requires an intact adrenal; the factor

lost by adrenalectomy appears to be adrenocortical since corticosteroid

restore naloxone's effectiveness. Cortisol is required for production

(12), stability (13), and receptor binding (14) of catecholamines.

Therefore, we thought that there was an erdorphin-catecholamine

interaction in the peripheral vasculature or the heart which resulted in

depression during hemorrhagic shock which was unmasked by naloxone.

This idea led to the following series of experiments in dogs.

* -II-
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h) Results: Autonomic nervous system involvement

raloxone causes a transient decrease in HR and sustained

increases in MAP, CO, and LV dp/dt max in canine hemorrhage. The role

of the autonomic nervous system was investigated by means of cardiac

denervation and pharmacological blockade (n=50). The transient

bradycardia was prevented by S-adrenergic receptor blockade or cardiac

denervation. The sustained hemodynamic responses were unaffected by

cardiac denervation (Figure 20). They were, however, attenuated

significantly by either a- or e-adrenergic blockade (phenoxybenzamine or

metoprolol, respectively) and potentiated by cholinergic receptor

*blockade with methylatropine (Figure 21). In these and most subsequent

figures, the results are shown as the mean net naloxone effect which is

the difference over 30 minutes between the mean response to naloxone ard

the mean response to saline. Cardiac denervated dogs experienced a

*tachycardia in response to naloxone which was blocked by e-adrenergic

blockade with metoprolol. Naloxone had no effect on plasma

catecholamine levels (Table V). The sustained cardiovascular respcnses

to naloxone were the result of a parasympathetic stimulation which

modestly attenuated an adrenergic component. The adrenergic stimulation

of the heart after naloxone appeared to result from existing adrenergic

stimulation and not sympathoadrenal discharge.

We tested the hypothesis that naloxone potentiated the effects

,* of neurally and adrenally released catecholamines (n=60). Catecholamine

release was attenuated by a combination of surgical adrenal denervatior

and pharmacological ganglionic blockade with chlorisondamine (Table VI'.

Adrenal denervation or chlorisondamine alone attenuated the

cardiovascular responses to naloxone in hemorrhage. Denervation and

-i6



chlorisondamine in combination completely blocked the mean net naloxcne

effect which could be completely restored by infusion a- and

:-adrenergic agonists at a constant rate prior to naloxone treatment

(Figure 22).

We thought that naloxcne's potentiation of released catechola-

mines was primarily on the heart. Naloxone or its inactive stereoisomer

were given intravenously (i.v.) or directly into the coronary artery

(,i.c.) in dogs anesthetized and subjected to hemorrhagic shock.

Naloxone 2 mg/kg i.v. or 0.2 mg/kg i.c. significantly improved MAP, CO,

and LV dp/dt (Figure 23). Saline or naloxone 0.2 mg/kg i.v. were

without beneficial effects. The hemodynamic responses to naloxone i.c.

were dose-dependent and stereospecific. We concluded that naloxone's

beneficial effects in canine hemorrhagic shock were due to its action at

stereospecific cardiac opiate receptors.

We repeated some of these crucial experiments in monkeys

(n=20). Ablation of catecholamine responses by adrenalectomy and

chlorisondamine completely prevented the increase in YAP and LV dp/dt

max due to naloxone in hemorrhage. The usual response to naloxone was

restored by infusion of a- and 2-adrenergic agonists (Figures 24 and

25).

i) Results: Blood flow

Normovolemic (n=10) and hypovolemic (n=10) dogs were given

either saline or naloxone. Naloxore had no effect on the regional blood

flow distribution as measured by microspheres in normovolemia. In

contrast, naloxone significantly increased blood flow to the heart,

intestine, liver (arterial) and adrenal glands when given during

! 4



hypovolemic shock (Table Vtl).These results show increased perfusion of

vital organs as a result of improved cardiac action.

j) Results: Naltrexone, nalbuphine, and TRH

We also investigated the use of other agents in shock. The

longer acting opiate receptor antagonist naltrexone also improves

cardiovascular hemodynamics and survival in canine hemorrhagic shock

(Figures 26-29). These results are dote-dependent and support the view

that opiate-receptors and/or endorphins are involved in the

shock-induced cardiovascular depression by satisfying one of the

criteria for opiate involvement (15), namely effectiveness of another

opiate antagonist. Naloxone potentially might increase pain perception

so we investigated the effectiveness of thyrotropin-releasing hormone

(TRH) in primate shock. TRH is a physiological antiendorphin with

effects opposite to those of the endorphins without affecting pain

perception or binding to opiate receptors (16,17). TRH increases MAP

and LV dp/dt max in primate hemorrhagic (Figures 30 and 31) and

endotoxemic shock (Figures 32 and 33). These cardiovascular responses

were associated with increased survival in hemorrhage but not

endotoxemia. The mixed opiate receptor agonist/antagonist nalbuphine

relieves pain and yet reverses the cardiovascular depression in canine

hemorrhagic shock (Figures 96-29). Survival was also improved These

canine studies were done for a private contractor. However, primate

0 studies done under our Army Contract showed no improvement in

hemodynamics or survival.

k) Results: Importance of timing

* Delay in naloxon'e treatment (n=9, versus saline controls n=9)

by only 30 min in canine hemorrhage resulted in more modest increases in



MAP (Figure 34), CO (Figure 35), LV dP/dt max (Figure 36) and survival

than usual (5). On the other hand, in experiments nct covered by this

contract, naloxone pre-treatment had some unique effects on endotoxin-

induced cardiovascular effects and pathology: it prevented the typical

bloody diarrhea, maintained superior mesenteric arterial blood flow and

blunted the pulmonary arterial and portal venous hypertensive responses.

Survival was also increased to a similar extent (LD8 0 to LD20) as when

naloxone was given 15 min after endotoxin without affecting bloody

diarrhea or these cardiovascular parameters (6).

1) Results: Other studies on mechanisms and sites of action

* Catheters were placed into the central nervous system of dogs.

Naloxone (n=5) perfused intracerebroventricularly at 0.1 mg/kg failed to

improve MAP (Figure 38), CO (Figure 39) or LV dP/dt max (Figure 40)

compared to artificial CSF (n=5) in canine hemorrhage. In contrast,

this same dose and route of administration of naloxene (n=5) increased

these cardiovascular parameters (Figures 41-43) significantly compared

to artificial CSF (n=5) in canine endotoxic shock. Naloxone (n=5) given

intrathecally into the cisterna magna failed to have significant cardio-

vascular effects compared to CSF alone (n=5) in our canine hemorrhagic

shock model (Figures 44-46).

The exogenous opioid morphine depresses cardiac function in a

dose-dependent and naloxone reversible way (18). A portion of this

cardiovascular depression involved histamine release because it was

blocked by antihistamines working at the H, and H2 receptors. There

were also some direct cardiac depressant effects independent of

histamine release which were identified using cardiopulmonary bypass in

dogs to separate cardiac and peripheral vascular effects (19).

A'o, -h 4-



Opiates failed to r-elease histamine when injected into the

intact rat or following incubation with rat peritoneal mast cells, a

rich source of histamine. On the other hand, opiates did increase

plasma levels of epinephrine and norepinephrine three- to fivefold which

was naloxone-blockable and -reversible (19).

m) Discussion

Naloxone improves cardiovascular function and survival in

canine and primate hemorrhagic and endotoxemic shock. Our results in

primate shock indicate its possible usefulness in human shock but at

much higher doses than have been previously reported (in letters to the

editor) (reviewed in 7) to be beneficial in human septic or cardiogenic

shock. In two uncontrolled, nonrandomized trials naloxone was shown to

be effective when given to humans in shock (8,9). These two articles

differ in the doses of naloxone used with neither one achieving the

dosages we have found to be maximally effective in our primate models.

The two studies also differed in that steroids were shown to have no

effect by Groeger (9) and a detrimental effect on the hemodynamic

9J response to naloxone by Peters (8). The latter observation would be

more consistent with our observations. However, some steroid is

*necessary for the full naloxone response. Hence some of Peters'

"adrenocorticopenic patients" may not have responded because they had

had hypophysectomy whereas others in this group merely had received

large doses of corticosteroid. Groeger also showed that delay in

treatment decreases the effectiveness of naloxone which agrees with our

results and those of others (2C).

The most recent publication on the human use of naloxone (10)

shows no significant cardiovascular effects with doses of raloxor'e with

- 6)-



which we would not have found an effect in monkeys. These authors also

failed to note body temperature and acid-base balance, which we have

shown clearly 'o be important in the naloxone response. After our

initial report (21), others have shown that ambient and body temperature

are important determinants of the naloxone response in canine

endotoxemia (22) and hemorrhagic shock (23) respectively. We would

maintain that the ambient temperature effect is mediated by a response

in body temperature based upon our results as well as inspection of

these authors' results (22).

Our pharmacological and surgical dissection of the naloxone

response points to a peripheral cardiac opiate receptor site of cardio-

vascular depression in canine hemorrhagic shock and its reversal by

naloxone. Naloxone appears to potentiate existing adrenergic stimuli at

the heart by unmasking endorphin mediated depression. A unifying

hypothesis would be an endorphin-catecholamine interaction at the

cardiac s-adrenergic receptor and G-proteins. Such an interaction has

been demonstrated for morphine and prostaglandins in vivo and in vitro.

It is manifested through G-protein activation of adenylate cyclase with

biochemical expression through cyclic AMP (Figure 47). Cyclic-AMP then

phosphorylates key proteins important to intracellular calcium metabol-

ism and myocardial excitation-relaxation coupling lard ultimately

myocardial contractility). These ideas are shown in Figure .'8 with

known components indicated by asterisks. Such biochemical correlations

of physiological interactions are presently being explored in our

laboratory. Endorphins elevated in shock attenuate beneficial cate-

cholamine effects and this attenuation is unmasked by naloxone. This

supersensitivity to catecholanines may explain some of the side-effects

r
- - . -



of naloxone, especially hypertension (24) and arrhythmias 5.

Naloxone may also increase catecholamine release in certain situations,

and this result should dictate extreme care in its clinical use.

Endotoxic shock appears to involve different ndloxone-

sensitive mechanisms than hemorrhagic shock. Endotoxemia results in a

depression in central sympathetic nerve activity as measured in

splanchnic nerves. Naloxone reverses this depression and enhances

activity in the splanchnic nerves (26). Central nervous system

injection of naloxcne has been shown to improve cardiovascular

parameters which are then lost in hypophysectomized rats subjected to

endotoxemia (27) or hemorrhage (28). However, adrenal atrophy may have

resulted due t. hypophysectomy and prevented the naloxone response.

Others have shown that intracerebroventricular perfusion of naloxone

prevents endotoxin-induced decreases in cardiovascular function 19).
I

*We have shown that intracerebroventricular perfusion of naloxone fails

to increase MAP, CO, or LV dp/dt max in canine hemorrhagic shock tut

does improve these cardiovascular parameters in endotoxeric shoO.

Intrathecally administered naloxone similarly fails to improve

cardiovascular function in canine hemorrhage. These results i- toto

would be consistent with different sites for naloxone's effectiveness in

_* hemorrhage and endotoxemia, peripheral cardiac in the former and certra'

nervous system in the latter. By analogy, these sites are also where

endorphins depress cardiovascular function in these respective shock

paradigms. We need to investigate endotoxemic shcck pharma~clogica'!v

and surgically like we did hemorrhagic shock to excljde pcssit'e overlac

in mechanisms.
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Naloxone appears to be a safe and beneficial agent in the

treatment of shock. Other agents like naltrexone, nalbuphine and TPH

are available and seem to be effective. Their theoretical advantages

have not clearly been established.

n) Conclusions

. Naloxone improves mean arterial pressure, cardiac output,

myocardial contractility, and survival in canine and primate

endotoxic and hemorrhagic shock.

2. The site of cardiovascular depression by opiates and its

reversal by naloxone appears to be at stereospecific opiate

receptors on the heart in hemorrhage. Naloxone potentiates

the effects of existent catecholamine activity on the heart by

blocking endorphin attenuation of the adrenergic effect.

3. Naltrexone, nalbuphine and TRH are also effective anti-

endorphin substances in shock.

C) Reccrmendations

1. Continue to pursue controlled randomized clinical trials ol

naloxone in human shock.

Z. Investigate the biochemical correlaticns predicted ty cur

hypothesis, i.e., adenylate cyclase and cyclic-AMP activity in

the heart subject to catecholamines and opiates ir varicus

combinations.

3. Investigation of mechanisms cf cardiovascular depresoir hy

opiates in endotoxe'ic shock by direct intracoronaey injec:4cn

cf naloxone and by adrenalectomy ard ganglionic blockade

followed by infusion of - nd :.-adrenergic aon'sts.
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able I: Plasma i-endorphin ( -EP) and b-lipotropin (,1 -LPH) in mo c ej
endotoxemia as measured by radioimmunoassay (values in pg,ml'

Group Baseline Treatment=T T+30 min End

5-EP Saline 201±99 521±118 781:142 450±107
Naloxone 170±93 605±118 936±203 479-100

,--LPH Saline 28±28 373:166 844:293 450±154
Naloxone 131±131 685±292 972±428 453:219

Table HI: Plasma a-endorphin (s-EP) and E-lipotropin (E-LPH) in monkey
hemorrhage shock as measured by radioimmunoassay (values in pg!ml2

Group Baseline r 6C 90 30-

;-EP Saline 382±:25 ,72--187 1171t265 ,289_t22 58322E
Naloxone 230:64 661:47 895:142 9884 476=82

---L,"H Saline 39E:164 374:264 67d-168 1936:49E 7cK 9
Naloxone IC8:42 617i133 798:246 2L-6:119 615--2

_I - {-
I



"able 11:: Whole blood histamine in monkey hemorrhagic shock as
measured by radioenzYmatic assay (results in ng/ml)

Time, min
Group EC0 60 120 180 Z1ic

Experimental 13--2 17=2 15±5 16±3 25±6 33:6

Normal literature value 19±9

Table IV: Effects of intracerebral infusion of naloxone (nall. into
multiple opioid-sensitive sites on mean arterial pressure (MAP)
during primate hemorrhagic shock

Total nal MAP (mmHg)
Animal in 60' , nm Control Post-hem Max Survival

1 0.587 96 45 '20
2 0.176 iCO 45 + 5 4
3 1.121 108 45 i1
4 0.856 100 45 0
5 1.835 1C0 45 + 5
6 0.920 5C0 +45



_able '1: Effect of surgical and pharmacological autonomic intervention or, plasma
catecholamines in canine hemorrhagic shock as measured by radioenzymatic assay
'baseline values in pg/ml, rest in mcg/ml)

intervention Time Treatment Epinephrine Norepinephrine Dopamine

Surgical Baseline 68±35 234=41 114:48
Shock 18.9±3.4 6.5:0.9 1.6±0.3
+30 min Saline 26.5±10.7 8.0±0.7 2.2:0.2

Naloxone 15.8±2.6 7.9±2.4 1.8:0.4

Pharmacological Baseline 58±8 213±134 57:5C
Shock Saline 19.3:3.7 8.6±2.8 1.4:0.2

Metoprolol 21.1±7.0 5.2t1.3 1.0:0.2
Phenox y-
benzamine 9.4:1.5 4.2±0.5 1.0:0.2
Both 14.1±3.5 9.7±4.2 1.1±0.3
Methylatro-
pine 15.6±3.7 2.9±0.3 0.2:0."

Table VI: Effect of adrenal denervation (AD) and ganglionic blockade with chlorisondamin,
(CHL) on plasma catecholamines in canine hemorrhagic shock (baseline values in pg,'ml
rest in mcg/mi; also as % of sham AD post-hemorrhage in parentheses)

Group Epinephrine Norepinephrine Dopamine

Sham AD basel 4ne 274=236 180±48 45:29
Post-hemorrhage 18.8:3.8 4.2:0.6 0.8t0.1

AD 2.3t0.2 1.2±0.2 0.15:0.03

CHL 2.1±0.9 0.9±0.2 0.14±0.C2
(1 I I (),)C

AD+CHL 0.14±0.06 0.49±0.06 C.04±0.02
(1%) (12") (4',)

'
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Table VII: Regional blood flow distribution (mI/mmn/1.O gmn) during
hemorrhage hypotension in the dog

Change after Treatment with
Baseline Shock Saline Naloxone p

Heart 169±14 128±19 24±25 118±18 .015
Adrenal 356±41 196±28 -24±55 2-83±47 .003
Intestine 117±21 29±5 -13±7 15±5 .012
Liver 33±-13 16:3 -5±6 18±5 .011
Kidney 865±66 135=18 -2±53 102±53 .204
Brain 81:t8 64t8 -7±7 3t5 .257
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